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Modelling the response of the atmosphere to equatorial forcing
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SUMMARY

The equatorial region is of great importance in understanding the climate, but achieving good tropical
performance in climate models is still an outstanding problem. Essential to resolving tropical dynamics
is the correct prediction of the steady state behaviour. In this paper a new method is constructed capa-
ble of resolving these steady state solutions and hence validating general circulation models (GCMs).
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1. INTRODUCTION

The time and length scales of atmospheric dynamics range continuously over many orders of
magnitude. In this paper the atmosphere is modelled by the time-dependent three-dimensional
semi-geostrophic (SG) equations. Whilst the SG equations are an asymptotic approximation
to the governing equations of motion on large scales, and therefore appropriate for describing
slowly varying synoptic circulations, they do not describe convection which occurs on a much
faster timescale. However, the SG equations do admit non-local mass transportation which
is an (instantaneous) analogue of these convective processes. This non-local phenomena is
induced by the SG stability condition that ensures that solutions evolve such that air parcels
are stable with respect to idealized perturbations in their positions. The SG stability condition
manifests itself as a constraint on the pressure �eld and in the tropics prevents large pressure
gradient from occurring, restricting solutions to a near steady state. Lagrangian numerical
methods that both honour the SG stability constraint and permit non-local advection have
been developed [1–3]; however, these approaches are generally incompatible with the �xed
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grids employed in GCMs. The algorithm discussed in this paper translates the bene�ts of
these Lagrangian methods to �xed grid models.
This paper examines the response of the atmosphere to forcing in the equatorial region by

varying sea surface temperatures, developing the work of Gill [4]. If, in the tropics, local
convective equilibrium together with hydrostatic balance is assumed then much larger hor-
izontal pressure gradients are implied than observed. These pressure gradients are relieved
by the ‘Walker’ circulation, the atmospheric response to spatially varying heating. Whilst
one might expect such forcing to generate pressure variations near the equator of magni-
tudes similar to those observed in the extra-tropical regions, such perturbations violate the
SG stability condition and instead the heating is re�ected in variations in the vertical ve-
locity pro�le. In contrast GCMs are based on integrating the primitive equation set, rely-
ing on a columnwise convective parameterization scheme to diagnose the required vertical
mass transport to maintain stability. However, this approach can generate large horizontal
pressure gradients which are relieved by transient waves. These waves are arti�cial, and
impede prediction of the real transient waves which are believed to be responsible for trop-
ical variability. In this paper the SG stability constraint is investigated as a means of val-
idating convective parameterization schemes. An e�cient stabilization method is crucial for
this project as forcing the model with surface heat sources will tend to generate unstable
solutions.

2. GOVERNING EQUATIONS

The SG model is considered on an equatorial channel with a Cartesian co-ordinate system
(x; y; z), where z is a function of pressure as de�ned in Reference [5], and the hydrostatic
and Boussinesq approximations introduced in Reference [5] have also been employed. The
governing equations are then

Qu+
@
@t

∇s=H; (fvg;−fug; g�=�0)=∇s; ∇·u=0; u·n=0 on @� (1)
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The geostrophic velocities are denoted by ug and vg, � is the potential temperature, u=(u; v; w)
is the advecting wind �eld and r a heat source. The function s is a geopotential, � is the
angular velocity of the earth, and a the radius of the earth. Equation set (1) is solved in the
equatorial domain �, extending ±30◦ north and south, with 06z627 000m.
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Utilizing the divergence condition on u and assuming Q is invertible, we obtain a single
equation governing the evolution of s, namely

∇·Q−1 @
@t

∇s=∇·Q−1H;
(
Q−1 @

@t
∇s

)
·n=(Q−1H)·n on @� (2)

However, at the equator f vanishes and hence (2) is degenerate. Therefore, at these points we
solve only the z component of the original vector equation Qu+ @t∇s=H .
Considerable analysis exists regarding the solutions of (1). Firstly, we note that solutions

satisfying the SG assumptions are characterized by the eigenvalues of Q being non-negative,
corresponding to symmetrically stable, minimum energy atmospheric states [6]. Secondly, we
note that Q is closely related to the Hessian of s and hence this stability condition on Q is
e�ectively a constraint on the curvature of the geopotential.
In the special case where the Coriolis force is constant then the SG system can be

considered as a conservative transport equation for the potential vorticity, det(Q), coupled
with the inversion of a Monge–Amp�ere equation to recover s [7]. This formulation both
enables a weak existence theory to be constructed and illustrates that the associated optimum
transport map minimizes an energy ‘cost’ and may contain non-local parcel swapping.
In the varying Coriolis force model used here potential vorticity is no longer exactly

conserved in a Lagrangian sense. For this model existence of solutions for the shallow water
case have been investigated by generalizing the geostrophic co-ordinates of Hoskins [5]. The
generalized co-ordinates enable an analogous energy functional to be de�ned with respect to
which solutions are again shown to be a sequence of minimizers [8].
For the constant Coriolis force case geometric integration methods based on the dual

Monge–Amp�ere plus transport formulation have been constructed and can support solutions for
which s is non-smooth, characteristic of frontogenesis [1–3]. However, we wish to
construct a variable f model on a �xed grid and instead choose to integrate (1) using
�nite di�erence techniques, implicitly assuming a smooth solution, and then apply a stability
�x at locations violating the non-negativity condition on Q. The stability �x then takes the
form of an implicit mass transport scheme. The advantage of this approach is that the initial
integration will correspond to advection by a smooth velocity whilst the stabilization step will
correspond to non-local mass transportation. These two stages mirror a standard GCM time
step in which the mass transport process is modelled by a parameterization scheme. The mass
transport implied in the stabilization stage can therefore serve as a powerful validation tool
for the parameterization schemes employed in these models.

3. SOLUTION PROCEDURE

The numerical method implemented consists of the following stages:

1. Advect the geostrophic velocities ug, vg, and potential temperature �, by the wind utotal
using a semi-Lagrangian method, thus, enabling these quantities to be approximated at
the end of the time step.

2. Evaluate Q at the middle of the time step and check if the stability condition is satis�ed,
else halve the time step.
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3. Solve the elliptic Equation (2) to obtain an approximation to the geopotential s at the
end of the time step.

4. Stabilize the solution by computing s+ �stab for which the eigenvalues of Q at the end
of the time step are all positive at node points within the domain.

5. Compute either the smooth wind �eld comparable to that calculated in a GCM, or the
total mass transport

usmooth =Q−1
(
H − @

@t
∇s

)
; utotal =Q−1

(
H − @

@t
∇(s+ �stab)

)
(3)

6. Iterate the loop (1)–(5) within the time step until utotal and �stab are su�ciently converged.
7. Calculate the new geostrophic velocities from s + �stab and continue with the next time
step.

This algorithm is implemented using �nite di�erences to approximate the derivatives and a
staggered grid to ensure compactness of the various stencils. The pressure correction stage uses
a Crank–Nicholson time integration scheme whilst the semi-Lagrangian component utilizes a
four-stage Runge–Kutta method. The semi-Lagrangian stages require the advecting wind to be
de�ned throughout the time step and for the �rst iteration of the above loop this is achieved
by extrapolating from the previous three time levels. Having completed the �rst iteration of
this algorithm the predicted velocities from stage (5) are used.
The novel aspect of this work is the stabilization step achieved by minimizing the functional

G(�)=
∑
i
(�i(�)− �tol)2 ∀�i(�)¡�tol (4)

where �i(�) are the eigenvalues of the Q matrices evaluated using the potential s + � at
computational nodes within the domain. The aim is to �nd a stabilizing correction satisfying
G(�stab)=0. The sum in (4) is taken over all such eigenvalues that are less than the tolerance
�tol, with the exception of the pairs of zero eigenvalues associated with nodes lying on the
equator. The minimization is achieved using a gradient descent method with �tol = 1×10−10

and is found to be robust providing that the potential s has not departed too far from a stable
state. If the stabilization stage is unsuccessful then the time step could be repeatedly halved.
It is instructive to view the stabilization stage as a rearrangement process in which the

method determines the required sources and sinks to re-align the potential s rather than
generate a smooth wind with which to advect s by. In this manner the method may have
a non-local e�ect, transferring or rearranging components of the solution from one part of the
domain to another, see Reference [3] where this is achieved by a Lagrangian method.

4. NUMERICAL RESULTS AND DISCUSSION

To simplify the analysis of the results a pseudo 2D solution was considered with
constant forcing in the longitudinal direction. The solution was approximated on a grid of
3×11×5 cells in the x, y, z directions, respectively. To generate illustrative examples of the
? Crown copyright 2005. Reproduced with the permission of Her
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Figure 1. The heat source used as forcing (left) and the mass transport correction (right).

stabilization stage on this coarse grid it was found necessary to consider a larger forcing
amplitude than would be encountered globally in a meteorological context. However, the
observed phenomena are expected to be found as responses to strong localized forcing for
which more moderate circulations would be generated. Initially the atmosphere was considered
at rest and, as a relatively coarse discretization has been employed, a reasonably �at vertical
potential temperature gradient was speci�ed.
The solution was then initiated by taking three time steps of half an hour each, mildly

forced by the pro�le shown in Figure 1 scaled by �=0:001, followed by a single step with
�=0:0085 in order to produce signi�cant instabilities at the end of the time step. A result of
this increased forcing is that the computed potential s is unstable, indicated by the presence
of the negative eigenvalues of Q in Figure 2 and the inversion of the potential temperature
pro�le in Figure 3.
Applying the stabilization method to this time step renders the eigenvalues of Q positive

as indicated by Figure 2. Moreover, we note that the distribution of the maximum eigenval-
ues is largely undisturbed by the stabilization process indicating that the corrected potential
is still close to the unstable potential. The action of the stabilization step is most clearly
illustrated at the equator where the single non-zero eigenvalue asserts that the potential tem-
perature must be an increasing function of z. The stabilization of a pro�le of this nature is
shown in Figure 3. At the equator the stabilization is achieved by transport in the vertical
direction; however, in the rest of the domain ‘slantwise convection’ will occur with the poten-
tial s attaining a stable con�guration through rearrangements not necessarily aligned with the
co-ordinate axis.
More generally the e�ect of the stabilization stage can be assessed by considering the

speci�c mass transport correction evaluated as ∇·Q−1@=@t∇�stab which indicates the sources
and sinks added by this step. For this example the mass transport correction is shown in
Figure 1 and we note that the action of this term is largely to redistribute the solution
in the unstable zone, where the solution exhibits singular, or near singular, structure. In
contrast, the stabilization stage has minimal e�ect in the smooth regions of the solution where
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Figure 2. Minimum and maximum eigenvalues of Q pre-stabilization (above)
and post-stabilization (below).
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Figure 3. The unstable and stabilized potential temperature pro�le at the equator.
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the �nite di�erence approximations are valid. Critically it is this corrective mass transport
that is represented by parameterization schemes in GCMs and de�ciency in estimating this
transport e�ect may impair the ability of these models to accurately capture tropical steady
state circulations.
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